GLAMERDOC++
Gravitational Lensing Code Library
Loading...
Searching...
No Matches
LensHaloMassMap Class Reference

A class that includes the MOKA lens map. More...

#include <MOKAlens.h>

Inheritance diagram for LensHaloMassMap:
Collaboration diagram for LensHaloMassMap:

Public Member Functions

 LensHaloMassMap (const std::string &filename, PixelMapType maptype, int pixel_map_zeropad, bool my_zeromean, const COSMOLOGY &lenscosmo)
 loads a mass map from a given filename
 
 LensHaloMassMap (const PixelMap< double > &MassMap, double massconvertion, double redshift, int pixel_map_zeropad, bool my_zeromean, const COSMOLOGY &lenscosmo)
 Create a LensHalo from a PixelMap representing the mass.
 
 LensHaloMassMap (const PixelMap< float > &MassMap, double massconvertion, double redshift, int pixel_map_zeropad, bool my_zeromean, const COSMOLOGY &lenscosmo)
 
 LensHaloMassMap (double mass, Point_2d center, Point_2d range, double resolution, int zeropadding, double redshift, const COSMOLOGY &cosmo)
 This makes a uniform rectangular mass sheat.
 
 LensHaloMassMap (const LensHaloMassMap &h)
 
 LensHaloMassMap (LensHaloMassMap &&h)
 
LensHaloMassMapoperator= (LensHaloMassMap &h)
 
LensHaloMassMapoperator= (LensHaloMassMap &&h)
 
void assignParams (InputParams &params)
 
void checkCosmology ()
 checks the cosmology against the MOKA map parameters
 
void force_halo (double *alpha, KappaType *kappa, KappaType *gamma, KappaType *phi, double const *xcm, bool subtract_point=false, PosType screening=1.0)
 Routine for obtaining the deflection and other lensing quantities for a LensHaloMassMap for just one ray!!
 
void getDims ()
 
void readMap ()
 reads in the fits file for the MOKA or mass map and saves it in the structure map
 
template<typename T >
void setMap (const PixelMap< T > &inputmap, double convertionfactor, double z)
 reads in the fits file for the MOKA or mass map and saves it in the structure map
 
void writeImage (std::string fn)
 write the fits file of the new MOKA map from the structure map
 
Point_2d getCenter () const
 return center in physical Mpc
 
double getRangeRad () const
 return range of input map in rad
 
double getRangeMpc () const
 return range of input map in physical Mpc
 
size_t getN () const
 /// return number of pixels on a side in original map
 
size_t getNx () const
 return number of pixels on a x-axis side in original map
 
size_t getNy () const
 return number of pixels on a y-axis side in original map
 
- Public Member Functions inherited from LensHalo
 LensHalo ()
 Shell constructor.
 
 LensHalo (PosType z, const COSMOLOGY &cosmo)
 
 LensHalo (const LensHalo &h)
 
 LensHalo (LensHalo &&h)
 
LensHalooperator= (const LensHalo &h)
 
LensHalooperator= (LensHalo &&h)
 
float get_Rmax () const
 this can be used to tag types of LensHalos
 
float getRsize () const
 get the Rsize which is the size of the halo in Mpc
 
float get_mass () const
 get the mass solar units
 
float get_rscale () const
 get the scale radius in Mpc
 
PosType getZlens () const
 get the redshift
 
void getX (PosType *MyPosHalo) const
 get the position of the Halo in physical Mpc on the lens plane
 
PosType operator[] (int i) const
 returns position of the Halo in physical Mpc on the lens plane
 
void setTheta (PosType PosX, PosType PosY)
 set the position of the Halo in radians
 
void setTheta (PosType *PosXY)
 set the position of the Halo in radians
 
void setTheta (const Point_2d &p)
 set the position of the Halo in radians
 
void getTheta (PosType *MyPosHalo) const
 get the position of the Halo in radians
 
void setDist (COSMOLOGY &co)
 Set the angular size distance to the halo. This should be the distance to the lens plane.
 
PosType getDist () const
 
void displayPos ()
 
virtual void initFromFile (float my_mass, long *seed, float vmax, float r_halfmass)
 initialize from a simulation file
 
virtual void initFromMassFunc (float my_mass, float my_Rsize, float my_rscale, PosType my_slope, long *seed)
 initialize from a mass function
 
virtual void set_RsizeRmax (float my_Rsize)
 set Rsize (in Mpc) and reset Rmax
 
void set_mass (float my_mass)
 set mass (in solar masses)
 
virtual void set_rscale (float my_rscale)
 set scale radius (in Mpc)
 
void setZlens (PosType my_zlens, const COSMOLOGY &cosmo)
 set redshift
 
void setRsize (PosType R)
 
void setZlensDist (PosType my_zlens, const COSMOLOGY &cos)
 
void setMass (PosType m)
 
virtual void set_slope (PosType my_slope)
 set slope
 
virtual PosType get_slope ()
 get slope
 
bool get_flag_elliptical ()
 flag=True if halo elliptical
 
void set_flag_elliptical (bool ell)
 
bool get_switch_flag ()
 
void set_switch_flag (bool swt)
 flag permits case distinction in force_halo_asym for elliptical NFWs only (get_switch_flag==true), in latter case the mass_norm_factor^2 is used instead of mass_norm_factor.
 
virtual void setCosmology (const COSMOLOGY &cosmo)
 used for elliptical NFWs only, in that case get_switch_flag==true
 
bool compareZ (PosType z)
 force tree calculation for stars
 
EllipMethod getEllipMethod () const
 stars
 
std::vector< double > get_mod ()
 get vector of Fourier modes, which are calculated in the constructors of the LensHaloes when main_ellip_method is set to 'Fourier'
 
virtual std::size_t Nparams () const
 get the number of halo parameters
 
virtual PosType getParam (std::size_t p) const
 get the value of a scaled halo parameter by index
 
virtual PosType setParam (std::size_t p, PosType value)
 set the value of a scaled halo parameter by index
 
virtual void printCSV (std::ostream &, bool header=false) const
 print the halo parameters in CSV format
 
PosType MassBy2DIntegation (PosType R)
 Prints star parameters; if show_stars is true, prints data for single stars.
 
PosType MassBy1DIntegation (PosType R)
 calculates the mass within radius R by integating alpha on a ring and using Gauss' law, used only for testing
 
PosType test_average_gt (PosType R)
 calculates the average gamma_t for LensHalo::test()
 
PosType test_average_kappa (PosType R)
 
void set_norm_factor ()
 
void set_rsize (float my_rsize)
 set radius rsize beyond which interpolation values between alpha_ellip and alpha_iso are computed
 
float get_rsize ()
 
bool test ()
 perform some basic consistancy checks for halo
 
size_t getID () const
 
void setID (size_t id)
 
PosType renormalization (PosType r_max)
 
PixelMap< double > map_variables (LensingVariable lensvar, size_t Nx, size_t Ny, double res)
 Map a PixelMap of the surface, density, potential and potential gradient centred on (0,0) in LensHalo coordinates.
 

Public Attributes

std::string MOKA_input_file
 
int flag_MOKA_analyze
 if >=1 (true), do analyzis only; if = 0 (false) change units to internal GLAMER units and prepare for ray-shooting
 
int flag_background_field
 
- Public Attributes inherited from LensHalo
int tag =0
 

Protected Member Functions

 LensHaloMassMap (COSMOLOGY &c)
 
- Protected Member Functions inherited from LensHalo
PosType alpha_int (PosType x) const
 Calculates potential (phi_int) from alpha_h. If flag is_alphah_a_table is True it takes and integrates directly the gfunction instead of alpha_h. The gfunction is used for the InterpolationTable used in alpha_h. Setting the flag to False speeds up the calculation of phi_h.
 
PosType norm_int (PosType r_max)
 
void force_halo_sym (PosType *alpha, KappaType *kappa, KappaType *gamma, KappaType *phi, PosType const *xcm, bool subtract_point=false, PosType screening=1.0)
 returns the lensing quantities of a ray in center of mass coordinates for a symmetric halo
 
void force_halo_asym (PosType *alpha, KappaType *kappa, KappaType *gamma, KappaType *phi, PosType const *xcm, bool subtract_point=false, PosType screening=1.0)
 
bool force_point (PosType *alpha, KappaType *kappa, KappaType *gamma, KappaType *phi, PosType const *xcm, PosType rcm2, bool subtract_point, PosType screening)
 
void assignParams (InputParams &params, bool needRsize)
 read in parameters from a parameterfile in InputParams params
 
void error_message1 (std::string name, std::string filename)
 read in star parameters. This is valid for all halos and not overloaded.
 
virtual PosType alpha_h (PosType x) const
 
virtual KappaType kappa_h (PosType x) const
 
virtual KappaType gamma_h (PosType x) const
 
virtual KappaType phi_h (PosType x) const
 
virtual KappaType phi_int (PosType x) const
 
virtual PosType ffunction (PosType x) const
 
virtual PosType gfunction (PosType x) const
 
virtual PosType dgfunctiondx (PosType x)
 
virtual PosType bfunction (PosType x)
 
virtual PosType dhfunction (PosType x) const
 
virtual PosType ddhfunction (PosType x, bool numerical)
 
virtual PosType dddhfunction (PosType x, bool numerical)
 
virtual PosType bnumfunction (PosType x)
 
virtual PosType dbfunction (PosType x)
 
virtual PosType ddbfunction (PosType x)
 
virtual PosType dmoddb (int whichmod, PosType q, PosType b)
 
virtual PosType ddmoddb (int whichmod, PosType q, PosType b)
 
virtual PosType dmoddq (int whichmod, PosType q, PosType b)
 
virtual PosType ddmoddq (int whichmod, PosType q, PosType b)
 
void faxial (PosType x, PosType theta, PosType f[])
 If set to true the correct normalization is applied for asymmetric NFW profiles, the mass_norm_factor is different for the other halos.
 
void faxial0 (PosType theta, PosType f0[])
 
void faxial1 (PosType theta, PosType f1[])
 
void faxial2 (PosType theta, PosType f2[])
 
void gradial (PosType r, PosType g[])
 Derivatives of the potential damping factor with respect to r ... TODO: come up with a better damping faction.
 
void gradial2 (PosType r, PosType mu, PosType sigma, PosType g[])
 
void felliptical (PosType x, PosType q, PosType theta, PosType f[], PosType g[])
 Calculate the derivatives of the G function = r*sqrt(cos(theta)^2 + q(r)^2 sin(theta))
 
virtual void gamma_asym (PosType x, PosType theta, PosType gamma[])
 
virtual PosType kappa_asym (PosType x, PosType theta)
 
virtual void alphakappagamma_asym (PosType x, PosType theta, PosType alpha[], PosType *kappa, PosType gamma[], PosType *phi)
 Pseudo-elliptical profiles by Phi(G)-Ansatz.
 
virtual void alphakappagamma1asym (PosType x, PosType theta, PosType alpha[2], PosType *kappa, PosType gamma[], PosType *phi)
 Elliptical profiles by Fourier-Ansatz.
 
virtual void alphakappagamma2asym (PosType x, PosType theta, PosType alpha[2], PosType *kappa, PosType gamma[], PosType *phi)
 
virtual void alphakappagamma3asym (PosType x, PosType theta, PosType alpha[2], PosType *kappa, PosType gamma[], PosType *phi)
 
virtual PosType alpha_ell (PosType x, PosType theta)
 
double fourier_coeff (double n, double q, double beta)
 Calculates fourier-coefficients for power law halo.
 
double IDAXDM (double lambda, double a2, double b2, double x[], double rmax, double mo)
 
double IDAYDM (double lambda, double a2, double b2, double x[], double rmax, double mo)
 
double SCHRAMMKN (double n, double x[], double rmax)
 
double SCHRAMMJN (double n, double x[], double rmax)
 
double SCHRAMMI (double x[], double rmax)
 
void calcModes (double q, double beta, double rottheta, PosType newmod[])
 Calculates the modes for fourier expansion of power law halo. All the modes are relative to the zero mode to conserve mass throughout the calculation of kappa etc.
 
void calcModesB (PosType x, double q, double beta, double rottheta, PosType newmod[])
 
void calcModesC (PosType beta_r, double q, double rottheta, PosType newmod[])
 
virtual PosType InterpolateModes (int whichmod, PosType q, PosType b)
 
void analModes (int modnumber, PosType my_beta, PosType q, PosType amod[3])
 

Additional Inherited Members

- Static Public Member Functions inherited from LensHalo
static const int get_Nmod ()
 get length of mod array, which is Nmod. Not to be confused with getNmodes in the class LensHaloFit
 
- Protected Attributes inherited from LensHalo
float Rsize = 0
 
float mass
 
PosType Dist
 
PosType mnorm
 
float Rmax
 
PosType beta
 
float Rmax_to_Rsize_ratio = 1.2
 The factor by which Rmax is larger than Rsize.
 
float rscale
 scale length or core size. Different meaning in different cases. Not used in NSIE case.
 
EllipMethod main_ellip_method
 
PosType xmax
 
PosType mass_norm_factor =1
 This is Rsize/rscale !!
 
float pa
 
float fratio =1.0
 
bool elliptical_flag = false
 
bool switch_flag = false
 
PosType mod [Nmod]
 
PosType mod1 [Nmod]
 
PosType mod2 [Nmod]
 
PosType r_eps
 
- Static Protected Attributes inherited from LensHalo
static const int Nmod = 32
 

Detailed Description

A class that includes the MOKA lens map.

A class, where the lens is represented by a MOKA cluster in the form of a MOKAmap object (see the description of MOKAmap). It can either be used with the Lens model or by itself.

Note: To use this class requires setting the ENABLE_FITS compiler flag and linking the cfits library.

Constructor & Destructor Documentation

◆ LensHaloMassMap() [1/3]

LensHaloMassMap::LensHaloMassMap ( const PixelMap< double > & MassMap,
double massconvertion,
double redshift,
int pixel_map_zeropad,
bool my_zeromean,
const COSMOLOGY & lenscosmo )

Create a LensHalo from a PixelMap representing the mass.

This is especially useful for representing the visible stars from an image in the lens model.

constructor for making lens halo directly from a mass map

The pixel map should be defined with physical Mpc dimensions.

Parameters
MassMapmass map
massconvertionconvertion factor from pixel units to solar masses
redshiftredshift of lens
pixel_map_zeropadfactor by which to zero pad in FFTs, ex. 4
my_zeromeanif true, subtracts average density
lenscosmocosmology

◆ LensHaloMassMap() [2/3]

LensHaloMassMap::LensHaloMassMap ( const PixelMap< float > & MassMap,
double massconvertion,
double redshift,
int pixel_map_zeropad,
bool my_zeromean,
const COSMOLOGY & lenscosmo )
Parameters
MassMapmass map
massconvertionconvertion factor from pixel units to solar masses
redshiftredshift of lens
pixel_map_zeropadfactor by which to zero pad in FFTs, ex. 4
my_zeromeanif true, subtracts average density
lenscosmocosmology

◆ LensHaloMassMap() [3/3]

LensHaloMassMap::LensHaloMassMap ( double mass,
Point_2d center,
Point_2d range,
double resolution,
int zeropadding,
double redshift,
const COSMOLOGY & cosmo )

This makes a uniform rectangular mass sheat.

Parameters
masstotal mass in rectangle
centercenter of rectangle
rangewidth and hight in radians
resolutionresolution in radians
zeropaddingfactor by which to zero pad in FFTs, ex. 1 is no padding, 2 FFT grid is twice as big as original map
redshiftredshift of plane

Member Function Documentation

◆ assignParams()

void LensHaloMassMap::assignParams ( InputParams & params)

Sets many parameters within the MOKA lens model

not really used

◆ checkCosmology()

void LensHaloMassMap::checkCosmology ( )

checks the cosmology against the MOKA map parameters

checks that cosmology in the header of the input fits map is the same as the one set

◆ force_halo()

void LensHaloMassMap::force_halo ( double * alpha,
KappaType * kappa,
KappaType * gamma,
KappaType * phi,
double const * xx,
bool subtract_point = false,
PosType screening = 1.0 )
virtual

Routine for obtaining the deflection and other lensing quantities for a LensHaloMassMap for just one ray!!

Parameters
xxposition in physical Mpc

Reimplemented from LensHalo.


The documentation for this class was generated from the following files: