GLAMERDOC++
Gravitational Lensing Code Library
Loading...
Searching...
No Matches
LensHaloRealNSIE Class Reference

Represents a non-singular isothermal elliptical lens. More...

#include <lens_halos.h>

Inheritance diagram for LensHaloRealNSIE:
Collaboration diagram for LensHaloRealNSIE:

Public Member Functions

 LensHaloRealNSIE (float my_mass, PosType my_zlens, float my_sigma, float my_rcore, float my_fratio, float my_pa, const COSMOLOGY &cosmo)
 explicit constructor, Warning: If my_rcore > 0.0 and my_fratio < 1 then the mass will be somewhat less than my_mass.
 
 LensHaloRealNSIE (const LensHaloRealNSIE &h)
 
LensHaloRealNSIEoperator= (const LensHaloRealNSIE &h)
 
void force_halo (PosType *alpha, KappaType *kappa, KappaType *gamma, KappaType *phi, PosType const *xcm, bool subtract_point=false, PosType screening=1.0)
 overridden function to calculate the lensing properties
 
float get_sigma ()
 get the velocity dispersion
 
float get_fratio ()
 get the axis ratio
 
float get_pa ()
 get the position angle
 
float get_rcore ()
 get the core radius
 
void set_sigma (float my_sigma)
 set the velocity dispersion
 
void set_fratio (float my_fratio)
 set the axis ratio
 
void set_pa (float my_pa)
 set the position angle
 
void set_rcore (float my_rcore)
 set the core radius Einstein radius
 
void setZlens (PosType my_zlens, const COSMOLOGY &cosmo)
 
- Public Member Functions inherited from LensHalo
 LensHalo ()
 Shell constructor.
 
 LensHalo (PosType z, const COSMOLOGY &cosmo)
 
 LensHalo (const LensHalo &h)
 
 LensHalo (LensHalo &&h)
 
LensHalooperator= (const LensHalo &h)
 
LensHalooperator= (LensHalo &&h)
 
float get_Rmax () const
 this can be used to tag types of LensHalos
 
float getRsize () const
 get the Rsize which is the size of the halo in Mpc
 
float get_mass () const
 get the mass solar units
 
float get_rscale () const
 get the scale radius in Mpc
 
PosType getZlens () const
 get the redshift
 
void getX (PosType *MyPosHalo) const
 get the position of the Halo in physical Mpc on the lens plane
 
PosType operator[] (int i) const
 returns position of the Halo in physical Mpc on the lens plane
 
void setTheta (PosType PosX, PosType PosY)
 set the position of the Halo in radians
 
void setTheta (PosType *PosXY)
 set the position of the Halo in radians
 
void setTheta (const Point_2d &p)
 set the position of the Halo in radians
 
void getTheta (PosType *MyPosHalo) const
 get the position of the Halo in radians
 
void setDist (COSMOLOGY &co)
 Set the angular size distance to the halo. This should be the distance to the lens plane.
 
PosType getDist () const
 
void displayPos ()
 
virtual void initFromFile (float my_mass, long *seed, float vmax, float r_halfmass)
 initialize from a simulation file
 
virtual void initFromMassFunc (float my_mass, float my_Rsize, float my_rscale, PosType my_slope, long *seed)
 initialize from a mass function
 
virtual void set_RsizeRmax (float my_Rsize)
 set Rsize (in Mpc) and reset Rmax
 
void set_mass (float my_mass)
 set mass (in solar masses)
 
virtual void set_rscale (float my_rscale)
 set scale radius (in Mpc)
 
void setZlens (PosType my_zlens, const COSMOLOGY &cosmo)
 set redshift
 
void setRsize (PosType R)
 
void setZlensDist (PosType my_zlens, const COSMOLOGY &cos)
 
void setMass (PosType m)
 
virtual void set_slope (PosType my_slope)
 set slope
 
virtual PosType get_slope ()
 get slope
 
bool get_flag_elliptical ()
 flag=True if halo elliptical
 
void set_flag_elliptical (bool ell)
 
bool get_switch_flag ()
 
void set_switch_flag (bool swt)
 flag permits case distinction in force_halo_asym for elliptical NFWs only (get_switch_flag==true), in latter case the mass_norm_factor^2 is used instead of mass_norm_factor.
 
virtual void setCosmology (const COSMOLOGY &cosmo)
 used for elliptical NFWs only, in that case get_switch_flag==true
 
bool compareZ (PosType z)
 force tree calculation for stars
 
EllipMethod getEllipMethod () const
 stars
 
std::vector< double > get_mod ()
 get vector of Fourier modes, which are calculated in the constructors of the LensHaloes when main_ellip_method is set to 'Fourier'
 
virtual std::size_t Nparams () const
 get the number of halo parameters
 
virtual PosType getParam (std::size_t p) const
 get the value of a scaled halo parameter by index
 
virtual PosType setParam (std::size_t p, PosType value)
 set the value of a scaled halo parameter by index
 
virtual void printCSV (std::ostream &, bool header=false) const
 print the halo parameters in CSV format
 
PosType MassBy2DIntegation (PosType R)
 Prints star parameters; if show_stars is true, prints data for single stars.
 
PosType MassBy1DIntegation (PosType R)
 calculates the mass within radius R by integating alpha on a ring and using Gauss' law, used only for testing
 
PosType test_average_gt (PosType R)
 calculates the average gamma_t for LensHalo::test()
 
PosType test_average_kappa (PosType R)
 
void set_norm_factor ()
 
void set_rsize (float my_rsize)
 set radius rsize beyond which interpolation values between alpha_ellip and alpha_iso are computed
 
float get_rsize ()
 
bool test ()
 perform some basic consistancy checks for halo
 
size_t getID () const
 
void setID (size_t id)
 
PosType renormalization (PosType r_max)
 
PixelMap< double > map_variables (LensingVariable lensvar, size_t Nx, size_t Ny, double res)
 Map a PixelMap of the surface, density, potential and potential gradient centred on (0,0) in LensHalo coordinates.
 

Protected Member Functions

void assignParams (InputParams &params)
 initialize from a simulation file
 
PosType rmax_calc ()
 for the set fratio, sigma and rcore calculate the radius that contains the correct mass
 
void construct_ellip_tables ()
 
- Protected Member Functions inherited from LensHalo
PosType alpha_int (PosType x) const
 Calculates potential (phi_int) from alpha_h. If flag is_alphah_a_table is True it takes and integrates directly the gfunction instead of alpha_h. The gfunction is used for the InterpolationTable used in alpha_h. Setting the flag to False speeds up the calculation of phi_h.
 
PosType norm_int (PosType r_max)
 
void force_halo_sym (PosType *alpha, KappaType *kappa, KappaType *gamma, KappaType *phi, PosType const *xcm, bool subtract_point=false, PosType screening=1.0)
 returns the lensing quantities of a ray in center of mass coordinates for a symmetric halo
 
void force_halo_asym (PosType *alpha, KappaType *kappa, KappaType *gamma, KappaType *phi, PosType const *xcm, bool subtract_point=false, PosType screening=1.0)
 
bool force_point (PosType *alpha, KappaType *kappa, KappaType *gamma, KappaType *phi, PosType const *xcm, PosType rcm2, bool subtract_point, PosType screening)
 
void assignParams (InputParams &params, bool needRsize)
 read in parameters from a parameterfile in InputParams params
 
void error_message1 (std::string name, std::string filename)
 read in star parameters. This is valid for all halos and not overloaded.
 
virtual PosType alpha_h (PosType x) const
 
virtual KappaType kappa_h (PosType x) const
 
virtual KappaType gamma_h (PosType x) const
 
virtual KappaType phi_h (PosType x) const
 
virtual KappaType phi_int (PosType x) const
 
virtual PosType ffunction (PosType x) const
 
virtual PosType gfunction (PosType x) const
 
virtual PosType dgfunctiondx (PosType x)
 
virtual PosType bfunction (PosType x)
 
virtual PosType dhfunction (PosType x) const
 
virtual PosType ddhfunction (PosType x, bool numerical)
 
virtual PosType dddhfunction (PosType x, bool numerical)
 
virtual PosType bnumfunction (PosType x)
 
virtual PosType dbfunction (PosType x)
 
virtual PosType ddbfunction (PosType x)
 
virtual PosType dmoddb (int whichmod, PosType q, PosType b)
 
virtual PosType ddmoddb (int whichmod, PosType q, PosType b)
 
virtual PosType dmoddq (int whichmod, PosType q, PosType b)
 
virtual PosType ddmoddq (int whichmod, PosType q, PosType b)
 
void faxial (PosType x, PosType theta, PosType f[])
 If set to true the correct normalization is applied for asymmetric NFW profiles, the mass_norm_factor is different for the other halos.
 
void faxial0 (PosType theta, PosType f0[])
 
void faxial1 (PosType theta, PosType f1[])
 
void faxial2 (PosType theta, PosType f2[])
 
void gradial (PosType r, PosType g[])
 Derivatives of the potential damping factor with respect to r ... TODO: come up with a better damping faction.
 
void gradial2 (PosType r, PosType mu, PosType sigma, PosType g[])
 
void felliptical (PosType x, PosType q, PosType theta, PosType f[], PosType g[])
 Calculate the derivatives of the G function = r*sqrt(cos(theta)^2 + q(r)^2 sin(theta))
 
virtual void gamma_asym (PosType x, PosType theta, PosType gamma[])
 
virtual PosType kappa_asym (PosType x, PosType theta)
 
virtual void alphakappagamma_asym (PosType x, PosType theta, PosType alpha[], PosType *kappa, PosType gamma[], PosType *phi)
 Pseudo-elliptical profiles by Phi(G)-Ansatz.
 
virtual void alphakappagamma1asym (PosType x, PosType theta, PosType alpha[2], PosType *kappa, PosType gamma[], PosType *phi)
 Elliptical profiles by Fourier-Ansatz.
 
virtual void alphakappagamma2asym (PosType x, PosType theta, PosType alpha[2], PosType *kappa, PosType gamma[], PosType *phi)
 
virtual void alphakappagamma3asym (PosType x, PosType theta, PosType alpha[2], PosType *kappa, PosType gamma[], PosType *phi)
 
virtual PosType alpha_ell (PosType x, PosType theta)
 
double fourier_coeff (double n, double q, double beta)
 Calculates fourier-coefficients for power law halo.
 
double IDAXDM (double lambda, double a2, double b2, double x[], double rmax, double mo)
 
double IDAYDM (double lambda, double a2, double b2, double x[], double rmax, double mo)
 
double SCHRAMMKN (double n, double x[], double rmax)
 
double SCHRAMMJN (double n, double x[], double rmax)
 
double SCHRAMMI (double x[], double rmax)
 
void calcModes (double q, double beta, double rottheta, PosType newmod[])
 Calculates the modes for fourier expansion of power law halo. All the modes are relative to the zero mode to conserve mass throughout the calculation of kappa etc.
 
void calcModesB (PosType x, double q, double beta, double rottheta, PosType newmod[])
 
void calcModesC (PosType beta_r, double q, double rottheta, PosType newmod[])
 
virtual PosType InterpolateModes (int whichmod, PosType q, PosType b)
 
void analModes (int modnumber, PosType my_beta, PosType q, PosType amod[3])
 

Protected Attributes

float units
 
float sigma
 velocity dispersion of NSIE
 
float fratio
 axis ratio of surface mass distribution
 
float pa
 position angle on sky, radians
 
float rcore
 core size of NSIE
 
- Protected Attributes inherited from LensHalo
float Rsize = 0
 
float mass
 
PosType Dist
 
PosType mnorm
 
float Rmax
 
PosType beta
 
float Rmax_to_Rsize_ratio = 1.2
 The factor by which Rmax is larger than Rsize.
 
float rscale
 scale length or core size. Different meaning in different cases. Not used in NSIE case.
 
EllipMethod main_ellip_method
 
PosType xmax
 
PosType mass_norm_factor =1
 This is Rsize/rscale !!
 
float pa
 
float fratio =1.0
 
bool elliptical_flag = false
 
bool switch_flag = false
 
PosType mod [Nmod]
 
PosType mod1 [Nmod]
 
PosType mod2 [Nmod]
 
PosType r_eps
 

Static Protected Attributes

static size_t objectCount = 0
 
static std::vector< double > q_table
 
static std::vector< double > Fofq_table
 
- Static Protected Attributes inherited from LensHalo
static const int Nmod = 32
 

Additional Inherited Members

- Static Public Member Functions inherited from LensHalo
static const int get_Nmod ()
 get length of mod array, which is Nmod. Not to be confused with getNmodes in the class LensHaloFit
 
- Public Attributes inherited from LensHalo
int tag =0
 

Detailed Description

Represents a non-singular isothermal elliptical lens.

This is a true NSIE lens rather than an expansion that approximates one.

The maximum radius is set by requireing the total mass to match the input mass. At radii larger than this radius the halo is treated as a point mass. In the case of an ellipitcal halo there is a transition region between these to match the solutions without a discontinuity. In this region the lensing quanties have small corrections which do not correspond to a realistic mass distribution. If the halo is expected to be sampled at or beyond the maxiumum radius you should consider using a Truncated NonSingular Isotherma Ellipsoid (‘LensHaloTNSIE’) which more naturally deals with the finite truncation.

Constructor & Destructor Documentation

◆ LensHaloRealNSIE()

LensHaloRealNSIE::LensHaloRealNSIE ( float my_mass,
PosType my_zlens,
float my_sigma,
float my_rcore,
float my_fratio,
float my_pa,
const COSMOLOGY & cosmo )

explicit constructor, Warning: If my_rcore > 0.0 and my_fratio < 1 then the mass will be somewhat less than my_mass.

sqrt(fratio); // mass/distance(physical);

Parameters
my_massmass, sets truncation radius
my_zlensredshift
my_sigmain km/s
my_rcorecore radius
my_fratioaxis ratio
my_papostion angle

Member Function Documentation

◆ assignParams()

void LensHaloRealNSIE::assignParams ( InputParams & params)
protected

initialize from a simulation file

initialize from a mass function simple initialize from mass while setting a random position angle and ellipticity read-in parameters from a parameter file

◆ force_halo()

void LensHaloRealNSIE::force_halo ( PosType * alpha,
KappaType * kappa,
KappaType * gamma,
KappaType * phi,
PosType const * xcm,
bool subtract_point = false,
PosType screening = 1.0 )
virtual

overridden function to calculate the lensing properties

sqrt(fratio);

Parameters
subtract_pointif true contribution from a point mass is subtracted
screeningthe factor by which to scale the mass for screening of the point mass subtraction

Reimplemented from LensHalo.


The documentation for this class was generated from the following files: